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Abstract In this article, we review broadband dielectric spectroscopy in supercooled liquids, 

in many cases covering more than 15 decades in frequency and a wide range of temperatures 

from the low-viscosity liquid to the rigid sub-Tg glass. The access to this extremely broad 

frequency window allows a detailed study of the complexity of glassy freezing and glassy 

dynamics in a large variety of materials. Dielectric spectroscopy not only documents the 

enormous slowing down of the structural relaxation when approaching the glass transition, but 

also reveals a variety of further relaxation processes, which are important to understand the 

physics of the transition from a supercooled liquid into a rigid glass. After a short 

introduction, mainly focusing on long-term experiments on glasses and on the classification of 

glass formers into strong and fragile, we shortly discuss some basics of relaxation and 

conductivity contributions when viewed via dielectric spectroscopy. In chapter 3 we provide 

some prototypical examples of dielectric loss spectra covering a large frequency and 

temperature regime. The glass formers shown can be categorized into two classes, type A and 

type B. The latter reveal well-defined Johari-Goldstein secondary relaxations, which lead to 

peaks in the dielectric loss at least at low temperatures. The former exhibit an excess wing, 

showing only a change of slope of the high-frequency flank of the structural-relaxation loss 

peaks. Then we exemplify the phenomenology of glassy dynamics as revealed by these 

broadband spectra: the structural relaxation, the Johari-Goldstein relaxation, the appearance of 

a fast process as proposed by the mode-coupling theory, and the boson peak, a well-defined 

feature in the dielectric loss at THz frequencies, are discussed in detail. In a further chapter 

we focus on the importance of sub-Tg experiments: Aging experiments and a possible 

experimental evidence of the Gardner transition are discussed. Finally, we summarize the 

experimental dielectric results documenting the universality of glassy freezing, which can be 

directly derived from these measurements.   
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1. Introduction 

 

Glasses are of outstanding importance in our daily life. The origins of glassmaking 

probably reach back to around 3000 BC where first glass beads were manufactured. Since 

then, glass formation plays a dominant role in many different areas: Not only for bottles, 

vessels, or windows in all types of architecture – from churches to skyscrapers – but also for 

polymers, biopolymers, metallic glasses, pharmaceuticals, optical cables, or fiber composites. 

Grain boundaries are a characteristic fingerprint of crystalline materials. The lack of grain 

boundaries in glasses, e.g., results in optical transparency in the case of silicate glasses or in 

superior mechanical stability in metallic glasses and is an outstanding property of the glassy 

state. Due to supercooling, glasses have a broad temperature window for processing. On the 

contrary, crystalline materials liquefy or solidify nearly instantaneously. It is a general believe 

that any substance can be supercooled into a glassy low-temperature state, either being small 

enough or being cooled fast enough. Sometimes liquids even do not crystallize at equilibrium. 

Binary mixtures of hard spheres with different radii are prototypical examples of the latter 

scenario [1]. 

It is a long-standing mystery that a glass is a solid without any long-range order and at 

the same time is a liquid that cannot flow. The question still has to be answered if the glassy 

state is a genuine state of matter [2]. When a liquid transforms into glass, its viscosity 

increases by almost 20 orders of magnitude and so does the average molecular relaxation 

time. However, the structure, when viewed via the pair correlation function, remains almost 

unchanged. How can an ensemble of atoms or molecules attain rigidity without breaking 

symmetry? When a liquid crystallizes in a first-order phase transition, symmetry is broken 

and ergodicity is broken: Disordered configurations are no longer available. If a liquid 

transforms into glass, ergodicity is broken, but the symmetry obviously remains the same and 

disordered configurations are frozen on almost infinite times. Of course, if supercooling can 

be viewed as a purely kinetic phenomenon, critical temperatures would be shifted to 0 K and 

whether a material behaves as a liquid or solid is a function of time, only. The Deborah 

number D, which measures the relation of relaxation time to observation time, is the only 

important quantity. If D << 1 the material behaves as a liquid, for D >> 1 as a solid [3]. 

Indeed, as expressed in the Old Testament in a song by the prophet Deborah (Judges 5:5), one 

might argue that, given enough time, all matter flows. In the Vulgate (the Latin version of the 

Bible) one can read: "Montes fluxerunt a facie Domini". Of course, this hypothesis can hardly 

be proven experimentally. Taking materials with relaxation times characterized by much 

shorter time scales can illustrate this behavior. Silly putty is an extreme example of such a 

material: It bounces like an elastic solid when dropped to a hard surface, but flows when put 

on a table for a couple of minutes under the action of gravity.  

It has been speculated that old window glasses also will flow under the action of 

gravity and, hence, will be thicker at the lower edge when compared to the upper edge. This 

fact in some cases was verified in old medieval glasses, like, e.g., the window glasses of the 

cathedral in Augsburg from the end of the 11th century, showing the prophets Hosea, Moses, 

Daniel, Jonas, and King David. However, even if so, it cannot be a proof of glass flow on long 

times. Zanotto [4,5] (see also the comment by Pasachoff [6]) calculated the flow of silica 

glasses and concluded that at elevated temperatures far above room temperature, the glass 

would move a visible amount in 800 years. However, at room temperature, any glass flow 

would appear on incredibly long times only, far exceeding human time scales. These 

calculations simply tell us that medieval artisans were clever enough to mount large window 

glasses with the thicker end at the bottom.  

The pitch-drop experiment probably is the world’s longest-term laboratory experiment 

to probe this liquid-solid duality of matter. This experiment was started in 1927 by Thomas 

Parnell at the University of Queensland to document that solid materials, in fact, on very long 
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time scales behave as liquids: At elevated temperatures, a sample of pitch was filled into a 

funnel, which then was sealed and was allowed to settle for three years. Then the neck was cut 

allowing the pitch to flow (Fig. 1) [7]. The first drop fell in December 1938 while the latest 

drop - number 9 - fell in April 2014. In the early days of the experiment, there was no special 

control of atmosphere or temperature, but in 1988, air conditioning was installed. The 

sequence of falling drops allowed to calculate the viscosity of the pitch at room temperature, 

which is approximately 2.3  1011 times that of water. Similar experiments have been also 

started in other places, e.g., the Dublin pitch-drop experiment [8] was set up in Trinity 

College in 1944. 

 

 

 

 
Fig. 1: The University of Queensland pitch drop 

experiment at 1990 two years after the seventh drop 

and 10 years before the eight drop fell. At that time, 

the experimenter was Professor John Mainstone. 

(Image Source: John Mainstone, University of 

Queensland).   

 

 

That vitrification probably is much more complex and not at all a purely kinetic 

phenomenon only, comes from detailed experiments on viscosity of a large number of very 

different materials. When measuring viscosity or relaxation times as function of temperature 

over a large time or frequency range, one can observe two limiting behaviors [9,10,11]: 

Strong liquids follow an ideal Arrhenius behavior,  ~ exp(/T), where  corresponds to an 

energy barrier against  molecular reorientation or displacement. At the lowest temperatures, 

viscosity grows towards infinity, but strictly only at T = 0 K. Window glasses based on 

amorphous SiO2 are prominent examples approximately showing this so-called strong 

behavior. On the other hand, fragile liquids in an Arrhenius representation, log  vs. 1/T, are 

strongly curved, displaying so-called super-Arrhenius behavior. The viscosity in these cases 

can approximately be described by an Vogel-Fulcher-Tammann (VFT) law,   ~ exp[B/(T - 

TVF)], and diverges at the Vogel-Fulcher temperature TVF, indicating some kind of low-

temperature (hidden) phase transition at TVF, well below the glass-transition temperature Tg, 

which is defined by a viscosity of 1012 Ps s or alternatively by an average relaxation time of ~ 

100 s. Many low-molecular-weight glass formers, like ortho-terphenyl, follow this fragile 

temperature dependence of the viscosity.   

This notably different relaxation characteristics is indicated in Fig. 2(a) in an 

Arrhenius-type representation, where the logarithm of the viscosity is plotted versus the 

inverse temperature [14]. The Arrhenius behavior yields infinite relaxation time at 0 K, while 

VFT behavior implies diverging relaxation rates at a finite temperature TVF, which, however, 

is located well below the glass-transition temperature. The Arrhenius law implies a well-

defined temperature-independent energy barrier against molecular motion, while a VFT 

behavior can be ascribed to temperature-dependent energy barriers E(T) [cf. dashed lines in 

Fig. (2b)]. The increase of the energy barriers on decreasing temperatures can be explained in 

terms of growing molecular clusters, which cooperatively reorient, and it seems clear that 

larger clusters will exhibit larger energy barriers as schematically indicated within the circles 
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at the right of Fig. (2b). This picture can be traced back to the early days of glass physics, 

where the super-Arrhenius behavior of the viscosity was explained by an increasingly 

cooperative character of molecular motions, in terms of growing cooperatively rearranging 

regions [12]. An experimental proof of growing length scales and, hence, an increasing 

number of correlated particles in approaching the glass transition, has been given recently by 

non-linear dielectric-susceptibility experiments [13,14].  

 

 
 
Fig. 2: (a) Temperature dependence of the logarithm of the viscosity of glass formers vs. the inverse temperature 

[14]. Strong liquids follow an Arrhenius behavior, while the temperature dependence of fragile liquids can 

approximately be described in terms of a Vogel-Fulcher-Tammann law. The two different behaviors are 

normalized at the glass-transition temperature Tg characterized by a viscosity of 1012 Pa s. The glass-transition 

temperature and the Vogel-Fulcher temperature TVF, where the relaxation times become infinitely long, are 

indicated. (b) Vogel-Fulcher-Tammann behavior derived from temperature-dependent energy barriers E(T), 

which are explained in terms of growing molecular clusters, reorienting cooperatively, as schematically indicated 

by molecules of same color within the circles at the right [14]. The inset shows the temperature dependence of 

energy barriers vs. the inverse temperature, revealing the dramatic increase on decreasing temperature. 
 

 

To summarize, the Arrhenius law of strong liquids implies a continuous increase in 

viscosity down to 0 K. In contrast, the VFT behavior signals a critical temperature. From 

early on, these two rather contradicting aspects, a purely kinetic freezing phenomenon vs. the 

assumption of a hidden phase transition, which, however, is not accessible in real 

experiments, guided the theoretical description of the glass transition over the last century. 

For example, some theories describe glasses simply as kinetically constrained liquids [15] 

with a strongly increasing viscosity, which makes them seem effectively rigid at low 

temperatures. Alternatively, other theories assume the existence on an underlying 

thermodynamic phase transition to a state with frozen-in but well-defined disordered positions 

[16].  

  

 

2. Dielectric spectroscopy 

 

 To unravel the mystery of glass formation, the slowing down of molecular motion has 

to be recorded in the broadest dynamic regime possible. This can be achieved by dielectric 

spectroscopy, where 20 decades of frequency of the applied ac field can be covered. For this 

purpose, a vast number of different experimental techniques has to be employed, ranging 

from time-domain spectroscopy over frequency-response analysis and coaxial 

reflection/transmission methods far into the optical regime utilizing terahertz and far-infrared 

techniques [17,18]. Over the last decades, dielectric spectroscopy has been developed as an 
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extremely useful tool to unravel glassy dynamics [18,19,20,21,22,23]. These experiments do 

not only allow to categorize supercooled liquids into strong and fragile, but also demonstrated 

an enormous complexity of the relaxation dynamics, with the main structural relaxation 

accompanied by secondary relaxations, fast processes, and microscopic peaks in the optical 

regime. Dielectric spectroscopy has also been proven to be an ideal tool to study hole burning 

in supercooled liquids, an experimental proof of heterogeneity of the relaxation dynamics, 

excluding any homogeneous freezing scenario [24]. It is ideally suited to follow the ageing of 

glasses [25] and, in recent times, it even contributed to the dispute about the existence of a 

further transition, which is located deep in the glass state, the so-called Gardner transition 

[26]. Finally, non-linear dielectric spectroscopy has been developed and provided first hints 

concerning the cooperative character of glassy freezing [13,14,27,28]. These latter aspects 

will not be covered by this short review. 

 To characterize glassy matter, usually the complex dielectric permittivity * = ' - i" 

is measured, which allows to determine the temperature and frequency evolution of the real 

part, ', and the imaginary part, ", of the dielectric constant. When a material contains 

molecular dipoles and when its structure allows these dipoles to reorient, this molecular 

motion can be followed and mapped out by dielectric spectroscopy. Fig. 3(a) schematically 

shows the real and imaginary part of the dielectric constant as function of frequency for three 

different temperatures. On increasing frequencies, the dielectric constant exhibits a step-like 

decrease from a low-frequency “static” value, s, to a high-frequency value, ∞, which is 

governed by the ionic and electronic polarizability of the material under investigation. A peak 

in the dielectric loss accompanies this step-like decrease of the real part. In the case of non-

interacting relaxing dipoles, the loss peak is fully symmetric and has a width of 1.14 decades 

in frequency. This is the case of a pure Debye-like relaxation [29]. On increasing 

temperatures, the step in the real part and the peak in the imaginary part move towards higher 

frequencies, indicating the speeding up of dipolar reorientation, driven by thermal activation. 

The peak maximum (νp) and the point of inflection of the step-like decrease characterize the 

relaxation rate  = p or the relaxation time τ via the relation τ = 1/(2πν) and, hence, are a 

measure for the molecular mobility. The other important parameter of the Debye relaxation is 

the dipolar relaxation strength , which is given by the height of the relaxation step or 

alternatively by the area under the loss peak. 

 

 
Fig. 3: Schematic view of the characteristics of dielectric spectra of glass formers as revealed by dielectric 

spectroscopy. (a) Typical relaxation spectra of real and imaginary part of the permittivity, shown for three 

temperatures. The horizontal arrow indicates increasing temperatures. The dashed line denotes the high-

frequency dielectric constant. A molecular electric dipole, which via thermal activation can reorient, is indicated. 

(b) Model functions of the dielectric loss vs frequency on a double logarithmic plot. These functions are 

commonly used for the description of loss spectra: The symmetric Debye function, asymmetrically broadened 

Cole-Davidson (CD) and Kohlrausch-Williams-Watts (KWW) functions, as well as the symmetrically broadened 

Cole-Cole (CC) function are plotted (see text for details). 
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 In the vast majority of real materials, dipolar relaxations, however, do not follow this 

Debye-like behavior. The loss peaks broaden considerably and in many cases have an 

asymmetric shape. Over the decades, several empirical functions have been developed to fit 

experimental data. The most common ones are the Cole-Cole (CC) [30], Cole-Davidson (CD) 

[31] and the Fourier transform of the Kohlrausch-Williams-Watts (KWW) function [32,33], 

to name a few. The dielectric loss calculated from these empirical functions is shown in Fig. 

3(b) in addition to the Debye function. It is important to note that the asymmetrically 

broadened CD and KWW functions follow a pure Debye-like behavior on the low-frequency 

side of the peak, namely a linear increase of "(). The broadening can be explained assuming 

a distribution of relaxation times: Each molecule relaxes exponentially in a Debye-like 

fashion, however, with different relaxation times of molecules at different sites. Then, for the 

different functions mentioned above, an average relaxation time  can be calculated. 

Usually, via   1/(2p) it can also be well approximated by deducing the peak frequency. 

The heterogeneous dynamics of the primary relaxation is treated in an enormous body of 

experimental and theoretical work, nicely summarized in Refs. [34,35,36]. However, also 

other scenarios are possible: For example, a temperature independent Gaussian distribution of 

energy barriers results in symmetrically broadened loss peaks, which can be described by the 

CC function. In this latter case, on decreasing temperature the width of these loss peaks would 

linearly increase following a 1/T behavior [26,37]. 

 

 
      
Fig. 4: Frequency dependence of real (σ', 

full line) and imaginary part (σ", dashed 

line) of the complex conductivity, plotted 

on a double-logarithmic scale. A dotted 

line indicates the frequency-independent 

dc conductivity. In the lower part of the 

figure, a schematic energy surface with a 

distribution of hindering barriers is 

indicated, illustrating the likely origin of 

the commonly observed increase of ' with 

frequency. 

 

 

 

 

 In some cases, when a material contains mobile charge carriers like electrons or ions, 

the dielectric response is governed by charge transport. In these cases, it is better to describe 

the experimental results using a conductivity formalism. It should be noted, however, that 

there is a one-to-one correspondence between complex permittivity and complex 

conductivity, which reads σ* = i*, and, thus, in principle both representations contain the 

same information. A representative plot of the complex conductivity is shown in Fig. 4: The 

real part of the conductivity, σ', reveals frequency independent dc contributions at low 

frequencies, crossing over into a pure ac conductivity towards higher frequencies. Ac 

conductivity contributions exhibit a characteristic power-law increase with frequency, σ' ~ s, 

with s < 1 [38,39]. The imaginary part of the conductivity is not sensitive to dc contributions 

and can be described by a similar power-law behavior with a different prefactor in the 

complete frequency range. The increase of the conductivity with increasing frequency results 

from the fact that the charge carriers, which are localized in potential minima with a broad 

distribution of energy barriers, at high frequencies easily can follow the applied ac electric 

field by back and forward jumps across small barriers. On the contrary, at low frequencies, 
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when moving over significantly larger distances, large barriers, which cannot easily be 

crossed, hinder them and long-range diffusion becomes suppressed (see schematic sketch 

shown as inset of Fig. 4) [40]. Here it should also be mentioned, that sometimes, especially 

for ionically conducting materials, instead of the conductivity representation the dielectric 

modulus M* = 1/* is analyzed to characterize the ionic dynamics [41]. Spectra of the 

imaginary part M"() reveal similar peaked behavior as "() of non-conducting glass formers 

and can be analyzed in an analogous way. This enables the determination of the so-called 

conductivity relaxation time , which is believed to provide a characteristic time scale for 

molecular motion in ionic conductors. However, one should be aware that the applicability 

and interpretation of the electric modulus is quite controversial (see, e.g., [42,43,44,45]). 

 Finally, we would like to come back to the temperature dependence of the average 

relaxation time of the primary relaxation, as observed in the vast majority of supercooled 

liquids. The structural or primary relaxation in glass-forming materials, as detected by 

dielectric spectroscopy, usually is called α-relaxation and, as will be shown later, is strongly 

coupled to the viscosity. In most glass-forming liquids, this strong coupling is valid for all 

temperatures above the glass-transition temperature and the dynamics of dipolar reorientation 

strictly maps the viscosity of the material under consideration. Of course, decoupling 

phenomena can appear below the glass-transition temperature, where molecular dipoles still 

may reorient, even in a rather rigid lattice. For the vast majority of supercooled liquids, with 

the prominent exception of mono-hydroxy alcohols [46], the α-relaxation is the dominating 

peak in frequency- and temperature-dependent dielectric spectra. Its tremendous slowing 

down under cooling in a narrow temperature range signals the increase in viscosity. As a rule 

of thumb, a viscosity of 1012 Pa s corresponds to a relaxation time of the order of 100 s.  

 As outlined already above and documented in Fig. 2, against naive expectations the 

viscosity and the average relaxation time, τ(T), in most supercooled liquids do not follow a 

simple Arrhenius law, τ = τ0 exp[E/(kBT)], which arises from purely thermally activated 

molecular motion over an energy barrier E separating neighboring minima in the potential 

surface of the system. Instead, for most glass formers a plot of log τ versus 1/T exhibits 

significant curvature as indicated by the solid line in Figure 2(a), which sometimes is called 

super-Arrhenius behavior. It can be formally fitted by the empirical VFT formula, τ = τ0 

exp[DTVF/(T-TVF)] [47,48,49]. Here D is the so-called strength parameter [50] and TVF is the 

Vogel-Fulcher temperature. Small values of D imply strong deviations from Arrhenius 

behavior. Such glass formers are also termed “fragile”, in contrast to so-called “strong” glass 

formers, whose relaxation time more closely follows the Arrhenius law [50]. Alternatively, a 

fragility index m was defined, which is given by the slope of the relaxation times plotted 

versus Tg/T, just at the glass-transition temperature [51,52,53]. The strength parameter is 

related to the fragility index via m  16 + 590/D. Hence, strong, Arrhenius-like behavior 

corresponds to a fragility index m = 16, while an upper limit of fragility was estimated to be 

close to 200 [54]. However, also other estimates exist (see later). 

 

   

3. Glassy dynamics revealed by dielectric spectroscopy 

 

 In Figs. 5 and 6 we provide some prototypical dielectric broadband loss-spectra of 

materials exhibiting glassy freezing as measured during the last years in our group in different 

systems. All the spectra shown in these figures are a combination of the results of different 

techniques. As will be indicated, most of these spectra have been partly published, but in 

several cases are extended either in frequency or in temperature. They provide an impressive 

illustration of the slowing down of the structural relaxation in a variety of glass-forming 

systems, ranging from water-salt mixtures to various molecular systems, documenting the 
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universal aspects of glassy freezing. The spectra reveal the enormous slowing down of the 

average relaxation rate, documented by the maximum of the loss peak (α-relaxation), which 

reaches up to 14 decades in frequency in a relatively narrow temperature regime. It has been 

proven for a variety of supercooled liquids that the α-relaxation closely follows the 

temperature evolution of the viscosity (see later). Figs. 5 and 6 impressively document the 

power of dielectric spectroscopy, which allows to follow and detect glassy freezing over more 

than 20 decades in frequency.  

 

 

 

 
 

 

 

 

 

Fig. 5: Broadband dielectric loss 

spectra of so-called type B glass 

formers at a series of temperatures 

ranging from the low-viscosity 

regime down to the glass-transition 

temperature and below. All spectra 

are shown on double-logarithmic 

scales for a series of temperatures. 

The solid lines represent the sum of 

model functions for the α-relaxation 

and the JG secondary ß-process as 

described in the text. (a) tri-

propylene glycol (TPG) [60,61], (b) 

xylitol [62], and (c) sorbitol 

[26,62]. In sorbitol, the dielectric 

loss is followed deep into the sub-

Tg region. 
 

 

 

 

 

 

 

 

 

 

 

 

  

In addition to the dominating α-relaxation, secondary processes appear at the high-frequency 

flank of the α-relaxation peak. There are numerous examples where secondary relaxations are 

peaked on the high-frequency flank of the structural relaxation and in these cases often are 

described as proto-typical examples of Johari-Goldstein (JG) relaxations [55]. The occurrence 

of these secondary processes is thought to be an intrinsic property of glass-forming liquids 

and to be inherent to the glassy state of matter. They do not, e.g., correspond to relaxations of 

side-groups of the molecules but may arise from relaxations in less-dense packed regions, so-

called islands of mobility [55]. An alternative explanation ascribes JG relaxations to motions 

within a fine structure of the energy landscape experienced by the molecules [56,57,58]. 
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Following the nomenclature introduced by the group of E. Rössler, these systems sometimes 

are termed type-B glass formers [59]. Three examples of broadband spectra of typical type-B 

glass formers are shown in Fig. 5. 

 The frequency and temperature dependence of tri-propylene glycol (TPG) is shown in 

Fig. 5(a). This spectrum covers more than fifteen decades in frequency. These results up to 

about 1 THz have been published by Köhler et al. [60]. Here we have added the high-

frequency infrared spectra [61], which cover the boson peak and will be discussed later. This 

figure provides the main characteristics of the relaxation dynamics governing glassy freezing. 

At high temperatures, α-relaxation and boson peak are not well separated and almost merge. 

This fact shows that, at high temperatures in the low-viscosity limit, relaxational and vibronic 

time scales heavily overlap. On decreasing temperatures, the structural relaxation rapidly 

slows down, documenting the tremendous separation of time scales of relaxations and 

vibrations. A gap opens between the boson peak and the α-relaxation. However, the loss in 

between is strongly enhanced and cannot be described as a simple overlap of the low-

frequency flank of the boson peak and the high-frequency flank of the structural relaxation 

[60]. In between a characteristic minimum appears, which represents a critical spectrum and is 

treated, e.g., in the framework of the mode-coupling theory (see later). At not too low 

temperatures (in the case of TPG for T > 220 K), the structural relaxation peaks up to the 

onset of the minimum can approximately be fitted by a CD function, yielding a constant slope 

of the high-frequency flank. However, at lower temperatures a clear peak evolves on this 

high-frequency flank, which becomes more prominent at low temperatures and is well 

established below Tg ~ 194 K. In Fig. 5(a) this sequence of α- and ß-relaxations are fitted by a 

sum of CD and CC functions, indicated by the solid lines in Fig. 5(a).  

 Similar spectra with a slightly reduced frequency scale are shown for xylitol [62] and 

sorbitol [26,62] in Figs. 5(b) and (c), respectively. The solid lines in Fig. 5(b) represent fits 

with a sum of Havriliak-Negami (HN) [63] and CC functions. The fits in sorbitol, indicated 

by solid lines in Fig. 5(c), were also performed utilizing a sum of HN and CC fits. Despite an 

overall similar behavior of the dielectric loss as function of frequency and temperature, there 

are significant differences when comparing these three dielectric loss spectra of type-B glass 

formers: The ß-relaxation in TPG has very low dipolar weight and on increasing temperatures 

seems to become almost hidden under the strong structural relaxation. The secondary 

processes in xylitol and sorbitol more strongly increase on increasing temperature and at 

elevated temperatures primary and secondary relaxations seem to be almost of equal weight. 

See, e.g., sorbitol at 295 and 310 K. The spectra of sorbitol are shown down to very low 

temperatures, far below Tg, and it is clear from these spectra that the ß-relaxation extremely 

broadens on decreasing temperatures. At the lowest temperatures, the dielectric loss is very 

low and characterized by a continuous decrease at least up to MHz frequencies. At 40 K the 

dielectric response is nearly flat, signaling an almost infinite width of the ß-relaxation, 

passing over into constant loss behavior [26]. These data can also be interpreted as signature 

of the so-called nearly constant loss, ascribed to a separate physical process. A prominent 

example is the "caged dynamics" treated within the extended coupling model [64]. 

 Figure 6 provides three further examples of glassy freezing of supercooled liquids 

viewed via the dielectric loss, where secondary relaxations do not show up as well defined 

peak on the high-frequency side of the α-relaxation, but rather are indicated as change of 

slope, only. Fig. 6(a) shows the dielectric loss as measured in H2O:LiCl solutions [65], Fig. 

6(b) the results in glycerol [20] and Fig. 6(c) in salol [66]. These so-called type-A glass 

formers are characterized by a second, more shallow power law at the high-frequency flank of 

the  peak, termed "excess wing", a nomenclature introduced by our group [67,68]. Again, at 

high temperatures T > Tc the structural relaxation seems to be characterized by one 

asymmetric loss peak, approximately described by KWW or CD functions. On decreasing 

temperatures, Tg < T < Tc, the excess wing evolves. This is, e.g., well documented in the 
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dielectric loss of glycerol and salol slightly above Tg: At 195 K and at 103 Hz in glycerol and 

at 228 K and 104 Hz in salol, the high-frequency flank of the α-relaxation reveals a clear 

change of slope. At further decreasing temperatures, e.g., at 179 K in glycerol and at 211 K in 

salol, well below the glass transition temperature, a clear shoulder-like curvature evolves, 

which seems to be the remainder of the JG ß-relaxation. Here it should be noted that these 

sub-Tg results had to be taken in thermodynamic equilibrium, which was reached after 

keeping the samples at the measurements temperature for up to five weeks [25,68,69]. As for 

several type-A glass formers in this way the excess wing was found to develop into a shoulder 

at low temperatures, it has been argued that this spectral feature is due to a JG relaxation, 

which is closer coupled to the structural relaxation than in type-B systems [68,]. This was 

later on corroborated by various other experiments [70,71,72,73]. 

 

 
 

 

 

 

 

Fig.6: Broadband dielectric loss 

spectra of type-A glass formers. 

All spectra are shown on double-

logarithmic scales for various 

temperatures. (a) 17.3 mol % 

water: LiCl solution [65]: the 

solid lines represent fits by a HN 

function for the α-relaxation. The 

dashed lines are drawn to guide 

the eye and to find a smooth 

extrapolation between the 

structural relaxation or the excess 

wing and the high-frequency 

peak. (b) glycerol [20]: the solid 

lines represent fits with a CD 

function for the α-relaxation. (c) 

salol [66]: the solid lines represent 

the sum of a HN function for the 

α-relaxation and a CC function for 

the secondary ß process. The line 

through the 211 K data is only a 

guide to the eye. 

 

 

 

 

 

 

 

 

 

  

In what follows, we will describe in more detail the phenomenology of glassy relaxation as 

revealed in Figs. 5 and 6. In glassy matter, the tremendous increase in viscosity on decreasing 

temperatures is clearly mapped by the slowing down of the dielectric loss peak, shifting 

through the enormous frequency window in a relatively narrow temperature regime. 

Structural relaxation and microscopic processes in the THz regime overlap at high 
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temperatures. The microscopic processes remain almost temperature independent and on 

cooling a strongly temperature dependent minimum occurs at GHz frequencies, which is 

described, e.g., by mode coupling theory. At lower temperatures, JG secondary processes 

appear separating more and more from the structural relaxation approaching the glass 

transition temperature. This sequence of processes will be described in the following chapters.    

  

 

3.1 Structural relaxation 

 

 
Fig. 7: Comparison of average relaxation times as determined by a variety of experimental techniques 

(left scale) compared with the temperature dependence of the viscosity (right scale) in (a) glycerol and 

(b) propylene carbonate [74]. The data for glycerol were taken from 

Refs. [75,76,77,78,79,80,81,82,83], those on propylene carbonate from [75,84,85,86]. The data are 

plotted in an Arrhenius-type representation. In both frames, the ranges of the axes of average 

relaxation times and viscosities were chosen to cover the same total number of decades and, in 

addition, their start values were adapted to match both data sets as close as possible.   

 

 

 As outlined above, the drastic increase of the viscosity of glass-forming materials is 

documented in the temperature evolution of the average relaxation rate  or the 

corresponding relaxation time τ = 1/(2). For temperatures above Tg, the temperature 

dependence of τ is strongly coupled to the viscosity and it can be measured by a variety of 

techniques, including ultrasound experiments, neutron and light scattering experiments, as 

well as by dielectric spectroscopy. For some systems, it has been experimentally checked if 

these average relaxation times really coincide with the temperature dependence of the 

viscosity, which of course is the true measure of glassy freezing. Examples are documented in 

Fig. 7(a) for glycerol and in Fig. 7(b) for propylene carbonate [74]. The most complete data 

set is available for glycerol. In Fig. 7(a) we compare our results of the average relaxation time 

as determined by dielectric spectroscopy in glycerol [75], with average relaxation times 

derived from shear modulus [76] and ultrasound results [77], as well as from neutron 

scattering [78,79] and light scattering experiments [80]. These average relaxation times are 

compared with existing viscosity results [81,82,83]. It is clear that viscosity results and 

relaxation times can be freely scaled against each other, however, only by a constant factor. In 

doing so, we find almost perfect agreement between all measurements in an astonishingly 

wide temperature and frequency regime. This figure also documents that the glassy dynamics 

can be studied by dielectric spectroscopy in the widest possible frequency range and with the 
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highest precision. If we take this comparison serious and accept the used scaling of viscosity 

and average relaxation times, we find that the glass transition temperature, which corresponds 

to a viscosity of 1013 Poise or 1012 Pa s determines an average relaxation time of 1000 s. As a 

rule of thumb, it is often assumed that the relaxation time at the glass-transition temperature 

equals 100 - 250 s.   

 Figure 7(b) provides a similar comparison for propylene carbonate. Here the average 

relaxation times as determined from our dielectric results [75], are compared with those 

deduced from neutron [84] and light-scattering studies [85]. Again, this temperature 

dependence of the average relaxation times is compared to the viscosity results [86] as 

described in detail in the figure caption. We find good agreement, with the exception that the 

neutron scattering data [84] seem to be significantly too low. If we accept scaling by a 

constant factor, we find that 1012 Pa s correspond to 10.000 s, which seems somewhat too 

large. Chen et al. [87] performed a critical comparison of viscosity and dielectric times. The 

main conclusion of their work was that rotational modes and viscosity are generally coupled, 

displaying parallel traces in the activation maps, although they can exhibit slight decoupling 

especially in the millisecond relaxation-time range. To conclude about the experimental facts 

documented in Figs. 7(a) and (b), we can state that the average relaxation times determined by 

dielectric spectroscopy certainly are strongly coupled to the viscosity and broadband 

dielectric spectroscopy is an ideal and unprecedented tool to study glassy dynamics. 

 

 
Fig. 8: a): Temperature dependence of average relaxation times in a variety of glass formers in an Arrhenius-type 

representation [65,75]: The logarithm of relaxation times is plotted vs. the inverse temperature. The solid lines 

represent fits with the Vogel-Fulcher-Tammann law (see text). b) Scaled relaxation times [21] in an Angell plot 

[89]: All materials shown are scaled to their glass-transition temperatures Tg. The dashed lines with m = 16 and 

m = 170 mark the extremes between strong (Arrhenius) and ultra-fragile behavior, respectively (see text). 

 

 

 The most relevant parameter that can be obtained from the loss peaks as documented 

in Figs. 5 and 6 is the average relaxation time. For the supercooled liquids shown in these 

figures, we collected the temperature dependence of the average relaxation times and added 

the results of propylene carbonate (PC) and propylene glycol (PC). The results are shown in 

Fig. 8(a). Lunkenheimer et al. [75] have collected most of these temperature dependencies of 

the average relaxation times. The τ values of the H2O:LiCl solutions were taken from Ref. 

[65]. As indicated by the solid lines, the temperature evolution of the average relaxation times 

of this variety of different systems – in an extremely dynamic range – can rather nicely be 

parameterized by the VFT law. However, it has to be clearly stated that the VFT law is a mere 

parametrization of the temperature dependence of the average relaxation times, respectively 
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of the viscosity. There are a number of alternative approaches to model the temperature-

dependent dynamics in glass-forming liquids. For example, Mauro et al. [88] have proposed 

an equation avoiding the divergence at a critical temperature inherent to the VFT law. In their 

formalism, the relaxations times, respectively the viscosity show a divergence at 0 K. 

Lunkenheimer et al. [75] provided a critical comparison of these two significantly different 

approaches, describing glass relaxation with or without the use of a critical temperature. They 

were able to show that in some cases this new Mauro-type temperature dependence really is 

superior. However, a number of examples were given, where the VFT law still provides the 

superior fits. 

 For a direct comparison, in Fig. 8(b) all average relaxation-time results presented in 

Fig. 8(a) are normalized to the glass transition temperature and are plotted on a scale Tg/T. In 

this so-called Angell plot [89], strong and fragile glass formers can easily be identified: The 

extreme values of strong and fragile are indicated by the dashed lines illustrating fragility 

indices of m =16 and m = 170. The value 16 corresponds to Arrhenius behavior, the value of 

170 is indicated as the highest possible fragility index. This value has been adapted from Ref. 

[90] and is slightly lower than the fragility index m = 200 [53] cited above. The examples 

shown in Fig. 8(b) all rather belong to the fragile class of supercooled liquids, with sorbitol 

and salol being close to the fragile extreme. 

     

  

3.2 Johari-Goldstein relaxation and excess wing 

 

 As noted above, characteristic secondary relaxations are observed on the high-

frequency flank of the structural-relaxation loss peaks. In some cases, secondary relaxations 

stem from intramolecular modes, for example side-chain motions of polymers. From the 

viewpoint of glass physics, these relaxations are of minor interest. Here we are concerned 

with secondary relaxations, which are thought to be inherent to the glassy state of matter. In 

their seminal work [55], Johari and Goldstein documented that secondary relaxations are also 

found in glass-forming systems with rigid molecules, where side-chain motions are unlikely 

to exist. To discriminate these inherent secondary processes, which seem to be intimately 

linked to the structural relaxation, these processes are often termed Johari-Goldstein 

relaxations or, alternatively, slow ß-relaxations to distinguish them from the fast ß-process of 

the mode-coupling theory.  

 Figures 5 and 6 already document that these secondary relaxations, in the frequency 

domain, appear as distinct relaxation peaks (type-B glass formers) or just as a change of slope 

of the high-frequency wing of the structural relaxation, leading to the so-called excess wing 

[68] (type-A glass formers). However, it should be noted that it still is quite controversial if 

the excess wing is indeed due a JG relaxation, partly hidden in the spectra below the 

dominating α-relaxation [68,70,91], or if is due to an additional, separate relaxation process 

[59,92]. In type-B glass formers, these genuine JG relaxations appear as symmetric peaks. 

This is best documented in Fig. 5(c) for sorbitol. In type-A glass formers the maximum of the 

dielectric loss can hardly be observed and only the high-frequency wing of the JG-relaxation 

peak can be fitted. In most cases, these secondary processes are analyzed in terms of CC-type 

relaxations. In the temperature dependence of the dielectric loss, a significant contribution 

from the JG relaxation shows up, too. Figure 9(a) documents "(T) of sorbitol, a prominent 

example of a type-B glass former, for measurement frequencies between 10 mHz and 20 kHz 

[26]. The characteristic feature of the α-relaxation is a significant peak close to room 

temperature. On decreasing temperature, a second peak is observed, arising from the JG 

relaxation, well separated from the structural relaxation. It shifts to lower temperatures for 

lower measuring frequencies. It should be noted that in Fig. 9(a) a change of slope to a 

weaker temperature dependence of " is found below Tg. This feature is primarily due to the 
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sample falling out of thermodynamic equilibrium at the glass transition and less due to the 

onset of JG-relaxation contributions to "(T). In fact, especially for the two higher frequencies 

shown in Fig. 9(a) the JG relaxation also significantly contributes to the left flanks of the -

relaxation peaks at T > Tg, which can be easily verified by a comparison with the loss spectra 

in Fig. 5(c) at temperatures somewhat above Tg (e.g., 275 or 282 K). 

 

  

 
Fig. 9: Temperature dependence of the dielectric loss at selected frequencies in (a) sorbitol [26], a prototypical 

type-B glass former, and in (b) glycerol, a type-A glass-forming system. Both figures are shown on 

semilogarithmic scales. Arrows indicate the glass-transition temperatures in both materials. The dashed lines in 

(b) indicate excess wing (EW) contributions at temperatures > Tg. 
 

 

 In clear distinction to sorbitol, the secondary relaxation in glycerol [Fig. 9(b)] does not 

show up as a second peak in "(T). Glycerol belongs to the class of type-A glass formers and 

its loss spectra [Fig. 6(b)] show an excess wing on the high-frequency flank of the structural 

relaxation [68]. In the temperature dependence, the dielectric loss reveals two changes of 

slope. The first one, occurring at higher temperatures is induced by the onset of significant 

contributions of the excess wing to the loss, which exists already significantly above Tg. In 

Fig. 9(b) these contributions are indicated by the dashed lines. A second change of slope 

appears close to the glass transition temperature, where the systems falls out of 

thermodynamic equilibrium. Here the excess wing is completely dominating the dielectric 

response. As discussed above, there is no final consensus concerning the microscopic origin 

of JG relaxations. They could be interpreted as jumps between local minima in a multiwell 

energy landscape, e.g., local small-angle vibrations [56,57,58] or as local processes in less-

dense regions of the structural glass, where, due to the frozen-in heterogeneity, islands of 

mobility exist [55].       

 From an evaluation of the frequency-dependent permittivity at different temperatures, 

it is possible to generate relaxation maps with α- and ß-relaxations in an Arrhenius-type 

representation. These are presented in Figs. 10(a) and (b) for two typical examples. Figure 

10(a) shows the average relaxation times for sorbitol [62], which is a prominent type-B glass 

former. Below Tg, in these materials the secondary relaxations are well separated from the 

structural relaxation and strictly follow an Arrhenius-type of behavior. It is evident that this 

relaxation dynamics mostly appears in a frozen glass matrix, which is out of thermodynamic 

equilibrium. In sorbitol, the JG ß-relaxation decouples from the α-relaxation at temperatures 

well above the glass-transition temperature. It is not an easy task to analyze the temperature 

dependence of the ß-relaxation times for T > Tg, due to fact that the corresponding features in 
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the dielectric spectra strongly overlap and the resulting average relaxation times bear large 

experimental uncertainties. However, in literature there are some reports that  of the ß-

process passes through a shallow minimum before finally approaching the α-process 

[60,93,94]. Dyre and Olsen explained this minimum in terms of a so-called minimal model 

for ß-relaxations [93] while an “encroachment” of the relaxation time of an additional γ-

relaxation with the JG relaxation was proposed in Ref. [95]. A minimum in the temperature 

dependence of the average relaxation time of the ß-process in sorbitol, before merging with 

the structural relaxation is compatible with the experimental results shown in Fig. 10(a) [62]. 

However, the precision of the data analysis does not allow finite conclusions.   

 

 

 
Fig. 10: Temperature dependence of average relaxation times of α- and ß-relaxation in an Arrhenius 

representation. Relaxation times are plotted vs. the inverse temperature for (a) sorbitol [62] and (b) glycerol 

[75,91]. The former is a type-B glass-former, the latter is of type A. The solid lines are fits with the VFT 

equation. The dashed line in (a) corresponds to Arrhenius behavior. 

 

 

 The temperature dependence of the secondary-relaxation times in type-A glass formers 

is significantly different: The secondary process, viewed via the excess wing, is always much 

stronger coupled to the structural relaxation. One problem arises because, in most cases, only 

the high-frequency flank of this secondary process can be analyzed and the tentative 

maximum is hidden under the dominating α-relaxation. An example where the secondary 

relaxation closely follows the primary relaxation in a distinct non-Arrhenius type of behavior 

is shown in Fig. 10(b) for glycerol [75,91]. This figure documents that the JG ß-relaxation in 

glycerol certainly follows a super-Arrhenius behavior and is closely coupled to the structural 

relaxation, in clear distinction to type-B glass formers. Fig. 10(b) also documents that the 

excess wing in glycerol can be analyzed well above the glass-transition temperature, even if 

large experimental uncertainties are considered. Similar results, namely that the JG relaxation 

is non-Arrhenius, were also found, e.g., for propylene carbonate, propylene glycol, and 

ethanol [60,91,96]. If the excess wing below the glass-transition temperature finally evolves 

into an Arrhenius behavior, cannot be finally decided. From the observations outlined above, 

one may conclude that the JG ß-process in type-B glass formers, at low temperatures strictly 

follows an Arrhenius behavior and at high temperatures probably exhibits a shallow minimum 

before merging with the structural relaxation. On the contrary, in type-A glass formers, the 

relaxation time of the excess-wing relaxation, also interpreted as inherent JG relaxation, 

always appears to closely follow the α-relaxation time, exhibiting an explicit super-Arrhenius 
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temperature dependence, and never seems to strongly decouple from the structural relaxation 

as found in type-B systems.  

 

 

3.3 The fast process 

 

 The mode-coupling theory (MCT) [97,98,99] belongs to the most prominent theories 

of the glass transition. In 1984, Bengtzelius, Götze, and Sjölander [97] and, independently, 

Leutheusser [98] showed that a specific version of the MCT of liquids exhibits a dynamical 

singularity, with striking characteristics of the liquid-glass transition. This theory predicts, in 

addition to a critical slowing down of the structural relaxation, a fast process, sometimes 

termed fast-ß process, located in the GHz to THz frequency regime. This fast process is 

thought to be associated with a rattling motion of a particle dynamically caged by its 

neighbors in the supercooled liquid state. The rattling is responsible for the fast process at 

high frequencies while the decay of the transient cage corresponds to the structural relaxation 

at lower frequencies. Consequently, the generalized susceptibility exhibits a critical spectrum 

in the regime between the microscopic peak and the structural relaxation, which according to 

MCT follows specific scaling predictions, all of which are experimentally accessible and, 

hence, stimulated enormous experimental interest. A review on the variety of experimental 

tests of MCT predictions was given by Götze [100].  

 In frequency domain, in the transition region between the microscopic peak and the 

structural relaxation, the fast ß-process shows up as a significant minimum in the imaginary 

part of the susceptibility (which corresponds to the loss " in the dielectric case) with 

enhanced fluctuations. MCT predicts scaling laws for the temperature dependence of this 

minimum, namely for its frequency νmin and the minimal susceptibility "
min. Moreover, the 

frequency of the peak maximum of the structural relaxation να also should exhibit critical 

behavior with the critical exponents being determined by the shape parameters of the 

minimum (see below). First experimental records, proving that this critical spectrum with a 

significant self-similar enhancement above background noise really does exist, have been 

provided by neutron scattering [101] and light scattering [102]. In due course, the scaling 

behavior of this critical spectrum and the existence of a critical temperature Tc were verified 

by dynamic light [103,104,105,106] and quasielastic neutron scattering [105]. At that time, 

dielectric spectroscopy in the GHz to THz frequency regime in supercooled liquids was 

hardly accessible. Based on dielectric experiments in salol up to 10 GHz it was argued that 

there is no minimum in the dielectric spectra and, thus, that a critical slowing down and a 

critical temperature do not exist and that MCT predictions are invalid for dielectric 

spectroscopy [107]. However, due to the development of continuous-wave submillimeter and 

THz spectroscopy as well as advanced transmission and reflection techniques in the 

microwave range [18], it was later possible to measure the dielectric loss in this frequency 

regime of the critical spectrum with high precision and to prove the qualitative validity of 

MCT [108,109]. It should be noted that, in addition to MCT, there are also other approaches 

explaining the finding of a shallow susceptibility minimum at high frequencies. The most 

prominent example is the extended coupling model [64] where a nearly constant loss 

contribution is predicted, which is ascribed to "caged dynamics". Indeed, dielectric spectra 

including the region of the high-frequency minimum have successfully been fitted using this 

approach [108,110,111]. 

 All the data sets determined from the different experimental techniques, like neutron 

and light scattering, as well as dielectric spectroscopy, finally yielded susceptibilities in 

qualitative agreement with MCT predictions, however also with sometimes quantitative 

differences. A critical comparison of the imaginary part of the dynamical susceptibility of 

glycerol, as measured by neutron and light scattering as well as by dielectric spectroscopy, is 
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provided in Ref. [19]. It covers the frequency regime of the critical spectrum including 

structural relaxation and microscopic peak. Similar comparisons have also be made for other 

glass formers [19,110]. Of course, it still is unclear to what extent MCT can be applied to real 

materials with irregularly shaped molecules and with very different microscopic 

intermolecular potentials. However, it is one of the main predictions of MCT that similar 

model parameters should arise from all observables, which couple to density fluctuations. In 

comparing the experimental results of neutron scattering, light scattering, and dielectric 

spectroscopy, one has to take into consideration that these experimental probes couple to 

different internal degrees of freedom: Dielectric spectroscopy and light scattering primarily 

probe the orientational dynamics of the molecules, while neutron scattering primarily couples 

to density fluctuations. One also should consider that MCT in its original form did not take 

into account non-spherical molecules and orientational degrees of freedom. Hence, perfect 

quantitative agreement between the results of these different experimental results cannot be 

expected. Later theoretical works, generalizing MCT by incorporating orientational degrees of 

freedom [112,113,114], have provided at least a qualitative understanding of many of these 

differences. Moreover, for supercooled propylene carbonate it was shown that the high-

frequency susceptibilities from dielectric, light-, and neutron-scattering experiments can be 

consistently described within an extended mode-coupling approach [115,116]. 

 

 
 

Fig. 11: (a) Dielectric loss of salol in the frequency regime of the fast ß process [61,117]. The solid lines are fits 

with the mode-coupling theory (see text). The inset shows a schematic sketch of the rattling process responsible 

for the frequency and temperature dependence in these regimes. Frames (b) - (d) show an analysis of these 

results within the framework of the mode-coupling theory: (b) temperature dependence of the minimum 

dielectric loss, (c) temperature dependence of the minimum frequency, and (d) temperature dependence of the 

structural relaxation rate [61,117]. Experimental results (symbols) are compared with theoretical predictions 

(solid lines). "min is the minimum dielectric loss at a given temperature, νmin corresponds to the frequency of the 

minimum, the exponent a corresponds to the high-frequency exponent of the minimum, να is the relaxation rate 

of the structural relaxation and the exponent γ is given by γ = 1/2a + 1/2b, where b is the low-frequency 

exponent of the minimum. 

 

 

Nowadays, the detection of glassy dynamics in this high-frequency regime by 

dielectric spectroscopy is well established and an example of the frequency and temperature 

dependence of the dielectric loss in the frequency regime of the critical spectrum is presented 
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in Fig. 11(a) for salol [61,117]. It shows the evolution of the dielectric loss " in the frequency 

regime between structural relaxation (< GHz) and microscopic peak (> THz) for temperatures 

between 263 and 361 K. Please note that the glass-transition temperature in salol is close to 

220 K and, hence, all these measurements were performed well above Tg. It is well 

established that the dynamic liquid-to-glass phase transition as predicted by MCT appears at a 

critical temperature Tc, which is always located significantly above the glass-transition 

temperature. The dielectric loss of salol reveals the well-known susceptibility minimum. It 

can be well fitted by the MCT prediction, namely the sum of two power laws with an 

exponent –b, accounting for the increase towards the structural relaxation at low frequencies, 

and with an exponent a for the increase at high frequencies [solid lines in Fig. 11(a)]. We find 

exponent parameters a and b of 0.352 and 0.75, respectively. Both parameters are directly 

related to each other and temperature independent, i.e., the minima at different temperatures 

can be scaled onto each other. On increasing temperature, the minimum significantly shifts to 

higher frequencies and the minimum value of " strongly increases. According to mode-

coupling theory, both quantities should follow strict scaling behaviors. An analysis of these 

results in terms of MCT scaling is documented in Figs. 11(b) – (d) [117]. The variation of the 

minimal dielectric loss "min [Fig. 11(b)], the slowing down of the minimum frequency νmin 

[Fig. 11(c)], and the predicted temperature dependence of the relaxation rate of the structural 

relaxation να [Fig. 11(d)], all can nicely be described using the critical scaling predictions of 

MCT with critical exponents that are partly directly related to the exponents a and b deduced 

from the shape of the minimum. The critical behavior of all three quantities shown in Figs. 

11(b) - (d) consistently points to the same critical temperature of Tc = 256 K. By light 

scattering, exponent parameters a = 0.327 and b = 0.641, as well as a critical temperature Tc = 

256 K were determined [104], well consistent with the present results from dielectric 

spectroscopy. We these that these and similar results in other glass formers 

[19,21,60,108,109] really document the predictive power of mode-coupling theory and are a 

proof of the existence of a critical dynamic transition between the supercooled liquid and the 

structural glass. Lastly, we want to point out that the results of Fig. 11 finally settle the 

dispute on the presence of the high-frequency minimum and of the critical dynamics in the 

dielectric response of salol [104,107]. 

 

   

3.4 Boson peak 

  

 A rather intriguing, universal, and still highly controversially debated feature of 

disordered matter is the appearance of the so-called boson peak in vibrational spectra and 

thermodynamic properties. In heat-capacity experiments, it shows up as an excess 

contribution in the 10 K range. In vibrational spectra, this peak is revealed as an excess 

contribution to the density of states in the low THz range, which in crystalline materials 

usually exhibits a Debye-like ν2 frequency dependence. The boson peak has been predicted to 

appear in Brillouin-scattering experiments in amorphous solids [118] and later on has been 

observed in a variety of disordered systems by Raman spectroscopy [119] and in inelastic 

neutron scattering experiments [120]. The name boson peak results from the fact that its 

amplitude exhibits only a weak temperature dependence, which obviously closely follows 

Bose-Einstein statistics. The boson peak can also be observed in dielectric spectroscopy and 

illuminating examples are shown in Fig. 5(a) for tri-propylene glycol and in Fig. 6(b) for 

glycerol.  

 Numerous models have been formulated to explain the microscopic origin of the 

boson peak and it is far out of the scope of this work to discuss and critically evaluate these 

vastly different models. Theoretical proposals include rather material-specific models [121], 

the involvement of soft anharmonic potentials [122], dynamics in fractal structures [123], 
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phonon scattering by intrinsic density fluctuations [124], spatially fluctuating force constants 

[125], random spatial variation of the shear modulus [126], or transverse vibrational modes 

arising from low-density defect structures [127]. It also has been proposed that the boson peak 

is a signature of a phase transition, where the potential energy surface changes from a 

minima-dominated phase with phonons to a saddle-point dominated phase without phonons 

[128].  

 As an example, in Fig. 12(a) we show the dielectric loss in glycerol in the frequency 

regime of the boson peak for a series of temperatures from 363 to 184 K, ranging from the 

low-viscosity liquid regime to the glass-transition temperature [129,130]. In glycerol, the 

boson peak is located at high frequencies, ν > 1 THz, and is only weakly temperature 

dependent. At lower frequencies a strong temperature dependence appears, partly due to the 

superposition with the strongly temperature dependent structural relaxation, but partly also 

because in this frequency regime the region of the critical dynamics of MCT is entered [19]. 

Only at the lowest temperature shown in Fig. 12(a), at 184 K, the boson peak appears nearly 

unobscured, extending from about 0.5 to 10 THz. At frequencies above 10 THz, internal 

molecular vibrations are detected, which become narrow and well defined on decreasing 

temperatures. Astonishingly, the boson peak in glycerol seems to exhibit a double-peak 

structure, indicating that a complex density of vibrational states contributes to it. 

  

 
 

 

 

 

 

 

 

Fig. 12: Boson peak in (a) the supercooled liquid 

glycerol for temperatures between 184 and 363 K 

and (b) in the plastic crystal ortho-carborane at a 

series of temperatures between 199 and 282 K 

[130]. 

 

 

 

 

 

  

 

 

 

 

  

  

 

 

 In Fig. 12 the boson peak in glycerol is contrasted with the corresponding feature as 

observed in a plastic crystal [130]. Plastic crystals are disordered systems, in which the 

centers of the molecules form a regular crystalline lattice and obey translational symmetry, 

while the orientational degrees of freedom are dynamically disordered and in some materials 

undergo glassy freezing into an orientationally disordered state [131]. Fig. 12(b) shows the 

boson peak in ortho-carborane for temperatures between 199 and 282 K [130]. Ortho-

carborane is a highly symmetrical molecule and, at first sight, can be described as rigid 
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sphere. The rigid molecules form the analogue of a mono-atomic lattice and, hence, should be 

characterized by acoustic modes only. Intramolecular excitations appear above 20 THz and 

are well separated from the acoustic modes. In this case, it seems that the boson peak simply 

maps the acoustic density of states with a cut-off frequency close to 4 THz. In Ref. [130] it 

was speculated that the coupling to the THz radiation may arise from a disorder-induced 

breaking of selections rules or a strong hybridization of collective phonon modes with local 

relaxational excitations. In any case, Fig. 12(b) provides clear experimental hints that in the 

glassy, orientationally disordered state, the boson peak results from acoustic modes. On 

increasing temperatures, these modes become less and less well defined and finally merge 

with the relaxational mode close to 282 K.   

 

 

4. Sub-Tg behavior of glasses 

 

4.1 Physical aging 

 

When a supercooled liquid is cooled below its glass temperature Tg, it falls out of 

thermodynamic equilibrium leading to the non-ergodic glass state. In the liquid state above 

Tg, under cooling the molecules (or other glass-forming entities like ions, atoms, polymer 

segments, etc.) can always adjust their arrangement in reaction to the falling temperature. 

However, this no longer is possible in the glass state because the relaxation time quickly 

reaches huge values below Tg (cf. Fig. 2) and, before the entities can adapt their arrangement, 

the temperature has fallen to even lower values. This results in a frozen glass state whose 

properties approximately reflect those of an equilibrium state at a higher temperature, termed 

fictive temperature Tf. Overall, this loss of equilibrium under cooling results in a weaker 

temperature dependence of various material properties below Tg as schematically indicated in 

Fig. 13. When, after cooling into the glass state, the material is held at constant temperature, 

in principle it will approach the equilibrium state. Then its properties will change with time, a 

process termed physical aging. This is indicated by the vertical arrow in Fig. 13. However, 

one should be aware that sufficiently far below Tg, due to the huge relaxation times arising 

already relatively shortly below Tg, this time dependence will be extremely slow and not 

detectable within realistic experimental time scales. Only for temperatures not more than 

several K below Tg, significant effects can be expected. 

 

  

 

 
Fig. 13: Schematic plot of the temperature 

dependence of a material property around the glass 

temperature (solid line). When crossing Tg, a weaker 

temperature dependence is found. The dashed line 

shows the equilibrium curve. The vertical arrow 

indicates the approach of equilibrium under aging at 

constant temperature. 
 

 

 

 

 

As an example, Figs. 14(a) and (b) show the time dependence of the dielectric loss of glycerol 

and xylitol under physical aging [25]. These experiments were performed after quickly 

cooling the samples from above Tg to temperatures about 6 K (glycerol) or 5 K (xylitol) 
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below the glass transition. Aging at constant temperature lasting up to 5 weeks was necessary 

to ensure that equilibrium was reached in these experiments. For both materials, a clear 

decrease of the dielectric loss is observed for all investigated frequencies. At these 

temperatures, the  peak is located outside of the investigated frequency range and "(t) in 

most cases reflects the behavior at the right flank of this peak. As discussed in Ref. [25], 

obviously the  relaxation shifts to lower frequencies under aging, resulting in the observed 

decrease of ". For xylitol aging at 243 K, at the higher frequencies the  relaxation partly 

contributes to the detected loss [cf. Fig. 5(b)], which explains the partial crossing of the 

corresponding aging curves in Fig. 14(b) [25,132].  

 

 
 

Fig. 14: Time dependence of the dielectric loss of glycerol (a) and xylitol (b) at temperatures below Tg [25]. The 

lines are fits with the modified KWW law as promoted in Ref. [25]. Frame (c) shows the average -relaxation 

times determined from equilibrium experiments (open symbols) and the relaxation times deduced from the aging 

experiments, extending the equilibrium results by several decades (closed symbols) [25,75]. The lines are fits 

with the VFT function. 
 

 

The analysis of such data is not straightforward. As realized already long ago, it is clear 

that, due to the structural rearrangements occurring during aging, the relaxation time of the 

material itself must be time dependent [133,134,135,136]. Therefore it is quite 

oversimplifying to fit such time-dependent data with simple stretched-exponential behavior 

with a fixed aging relaxation-time age as done, e.g., in Refs. [137,138,139]. Clearly, the 

parameters obtained by such an analysis should not be compared with equilibrium results. For 

a more sophisticated treatment of such data, the Tool-Narayanaswamy-Moynihan formalism 

[133,134,140] can be employed, which traces back the aging-induced variation of properties 

to the time-dependent variation of the fictive temperature, leading to a time-dependent 

relaxation time. However, the application of this formalism is not straightforward and for 

rather simple aging experiments as in the present case, especially for aging triggered by a 

single temperature jump, our group has suggested an alternative phenomenological approach 

[25]. It assumes a stretched-exponential time dependence (also termed KWW behavior), 

however modified by introducing a time-dependent relaxation rate which itself also varies 
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with a KWW function. This ansatz can be solved by recursion and the lines in Figs. 14(a) and 

(b) are fits with this approach, excellently describing the experimental data. All "(t) curves 

obtained at the different frequencies are simultaneously fitted with the same relaxation rate 

and width parameter, which is not possible when using a simple KWW function with time-

independent age [141]. Most importantly, only when employing this approach the obtained 

aging parameters are revealed to be consistent with those determined in equilibrium 

experiments at T > Tg [25,132,142]. As an example, Fig. 14(c) shows the temperature-

dependent -relaxation times  of glycerol and xylitol as determined from equilibrium 

measurements (open symbols) and, in addition, the relaxation times age resulting from the 

analysis of the aging data (closed symbols) [25,75]. The latter provide a perfect extrapolation 

of the equilibrium data, thus extending the range of (T) by up to three decades. The 

stretching parameter of the KWW function deduced from aging also is consistent with the 

equilibrium results [25]. From these and similar findings in other glass formers [25,132], one 

can conclude that physical aging is governed by the same dynamics as the  relaxation and 

that  = age. 

 

 

4.2 Gardner transition 

 

 As outlined above, in the research field of the glassy state of matter there exists a long-

standing controversy about a possible true phase transition and the existence of an ideal glass 

with infinite viscosity: The question if there is a hidden phase transition at non-zero 

temperature, which cannot be reached experimentally as the system falls out of 

thermodynamic equilibrium at the glass-transition temperature, or if glassy materials just 

become more and more sluggish on decreasing temperatures has finally not been answered. 

However, from an experimental point of view there is growing evidence of increasing length 

scales of cooperativity when approaching the glass transition [13,27,28], favoring a true 

phase-transition scenario. It came as a big surprise that recent theories suggest a further 

transition, deep in the glass state, which is thought to be even observable in non-equilibrium 

conditions. This so-called Gardner transition was originally predicted in mean-field theories 

of p-state spin glasses [143,144], but recently was also expected to exist in a variety of model 

glasses in infinite [145,146,147] as well as in three dimensions [148,149,150].The Gardner 

transition corresponds to a further fractionalization of the energy landscape making the glass 

even more heterogeneous in the low-temperature phase. However, it also has been argued that 

the Gardner transition might be strongly affected by finite dimensional fluctuations and 

doubts have been raised about its relevance for structural glass formers [151,152].  

 At the glass-transition temperature usually it is thought that the system is trapped in 

one of the many metabasins of the energy landscape and that the α-relaxation correspond to 

jumps between different metabasins. This scenario is indicated in Fig. 15(e) (left inset) at high 

temperatures. In real glasses, the structural relaxation slows down, its relaxation time 

following a VFT-type temperature dependence [solid line in Fig. 15(e)] and, approximately at 

the critical temperature Tc of mode-coupling theory, secondary JG relaxation processes 

decouple from the primary relaxation (dashed line). Within the metabasins these secondary 

relaxations can be thought as sub-basins, arising from local molecular motions [Fig. 15(e), 

middle inset]. At the hypothetical Gardner transition, a further roughening of the energy 

landscape occurs (right inset), which could give rise to a possible Gardner relaxation as 

indicated by the dash-dotted line in Fig. 15(e). Hence, in real glasses, the Gardner transition, 

if existent, has to be accompanied by a fractionalization of the JG sub-basins. As the Gardner 

transition can be also observed in non-thermodynamic equilibrium, it is clear that the 

experiment of choice is a detailed temperature dependent dielectric loss study of secondary 
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relaxations well below the canonical glass-transition temperature Tg. Long time ago this 

scenario has been proposed by Kirkpatrick and Wolynes [153]: Specifically with reference to 

the Gardner transition these authors pointed out that instabilities of the glass state at low 

temperatures may be associated with secondary relaxations. 

 

 
 
Fig. 15: (a-d) Schematic loss spectra vs. frequency of glass-forming materials on double logarithmic scales as 

function of temperature [26]: (a) The liquid state above Tc. (b) The supercooled liquid for Tg < T < Tc with a well-

developed secondary Johari-Goldstein relaxation. (c) The rigid glass below Tg but above the Gardner transition 

temperature TG , TG < T < Tg. (d) The glass far below the glass temperature and below the Gardner transition, 

T < TG < Tg. The different dynamic processes are indicated by color: The α relaxation (green), the JG β-relaxation 

(blue), the fast process (grey), and the boson peak (yellow). The red area in (d) indicates the suggested additional 

contribution arising from the sub-basins in the energy landscape induced by the Gardner transition. (e) Typical 

temperature dependence of the - and -relaxation times in an Arrhenius plot with a possible additional Gardner 

relaxation arising below TG [26]. In the different temperature regions we provide schematic views of the energy-

landscape scenario: α-relaxation, JG -relaxation, and possible modification of the local -relaxation basins by the 

Gardner transition, leading to a fractal roughening of the landscape. 

 

 

 A scenario of the temperature evolution of the frequency-dependent dielectric loss 

including a possible Gardener transition is indicated in Figs. 15(a-d). (a): At temperatures 

above the mode-coupling Tc, in the highly viscous liquid phase, the mode-coupling critical 

dynamics appears between structural relaxation and boson peak. (b): Roughly at Tc, secondary 

relaxations decouple from the primary relaxation and shift through the frequency window in 

the supercooled liquid. (c): Below the glass-transition temperature Tg, the α-relaxation is 

shifted out of the experimentally accessible frequency window. Now all experiments are 

clearly out of thermodynamic equilibrium and only JG-type ß-relaxations can be observed. 

(d): On further cooling, the ß-relaxation considerably broadens and the mean relaxation rate 

of the secondary relaxation is also shifted out of the experimental frequency window, leaving 

only its high-frequency tail visible. Any further fractionalization of the energy landscape, the 

scenario of a possible Gardner transition, then can be assumed to yield additional loss 

contributions, as indicated in (d). In high-precision dielectric loss experiments it should be 

possible to identify this onset of excess loss at low temperatures and to relate it to the 

appearance of a possible Gardner transition. 



24 

 

 In Fig. 5(c) we provided already broadband loss spectra of sorbitol in an extremely 

wide temperature range, including a detailed evolution of the secondary relaxation well below 

the glass-transition temperature [26,62]. Similar dielectric loss spectra are shown in Fig. 16 

for xylitol [26]. In both glass formers, we find a strong shift of the -relaxation peaks towards 

low frequencies accompanied by an extreme broadening. At the lowest temperatures, only the 

high-frequency flank of these secondary loss peaks can be detected. In Ref. [26], these loss 

peaks have been fitted using a Cole-Cole function, or, in case when the peak was completely 

shifted out of the frequency window of the experiment, by only fitting a power-law behavior 

accounting for the high-frequency flank. From these fits, it was possible to deduce the 

temperature evolution of the width parameter α of the symmetric CC function down to the 

lowest temperatures [26]. We want to point out that these experiments were performed at 

sufficiently low temperatures to exclude any effects from physical aging. As demonstrated, 

e.g., by Fig.14(b), detectable aging effects occur at temperatures much closer to Tg. 

 

 

  

 

 

 
Fig. 16: Sub-Tg spectra of the dielectric 

loss vs. frequency of xylitol for various 

temperatures between 39 and 220 K [26]. 

The lines are fits by a combination of 

power laws and the CC function as 

described in the text and Ref. [26]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The analysis of the dielectric loss results of Fig. 16 reveals a strong increase of the 

width parameter on decreasing temperatures, nearly reaching unity at 0 K, as indicated in Fig. 

17(a). One should have in mind that the approach of  = 1 on decreasing temperatures signals 

that the loss peaks become infinitely broad, resulting in a constant-loss behavior at the lowest 

temperatures. One possible scenario to explain this behavior relies on a model using a fixed 

distribution of local hindering barriers, namely assuming a temperature-independent Gaussian 

distribution of barrier heights [26,37]. This distribution characterizes the energy landscape of 

the sub-basins responsible for secondary relaxations as indicated in Fig. 15(e). That it is 

temperature independent follows from the fact that, below Tg, the local structure is effectively 

frozen-in. This model leads to symmetrically broadened loss peaks that closely follow CC 

behavior, justifying its application for the JG  relaxation. Interestingly, such a temperature-

independent energy-barrier distribution leads to a strongly temperature-dependent distribution 

of relaxation times, namely, the half width W of the latter is expected to diverge with 1/T 

[37,59]. From the experimentally determined width parameters of the CC distribution, shown 

in Fig. 17(a), the half widths Wτ were calculated and plotted in Fig. 17(b) [26]. Indeed, the 

overall behavior follows the general trend of a 1/T divergence. However, the line in Fig. 
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17(b), showing the expected Wτ  1/T behavior, reveals some significant deviations. Here the 

proportionality parameter of the 1/T law was adapted to match the high-temperature data. 

Then W(T), determined from (T) of the loss peaks (circles), at low temperatures becomes 

even broader compared to the half width resulting from a constant Gaussian distribution of 

energy barriers (line). This strong additional low-temperature increase in the half width 

becomes even more obvious in the inset of Fig. 17(b) by plotting Wτ  T. As shown by the line 

in Fig. 17(a), the 1/T behavior of W leads to an approximately linear increase of (T). Again, 

deviations show up and the experimental width parameter approaches α = 1 already at higher 

temperatures. 

 
 

 

 

 

 
Fig. 17: (a) Circles indicate the temperature 

dependence of the width parameter α as obtained from 

fits of the dielectric loss of xylitol as described in the 

text [26]. The line was calculated from the 1/T 

dependence of W shown by the line in frame (b). (b) 

The circles show the temperature-dependent half-

width Wτ of the distribution of relaxation times, which 

was calculated from the experimentally determined 

(T) assuming a temperature-independent Gaussian 

distribution of energy barriers. The line in (b) shows 

the expected 1/T divergence of Wτ, adapted to match 

the experimental data at high temperatures. The inset 

highlights the strong deviations from this expected 

behavior below approximately 100 K.  

 

 

 

 

 

 

 

 

Geirhos et al. [26] interpreted this and similar behavior found for sorbitol as an 

indication of a further roughening of the energy landscape of the sub-basins by the Gardner 

transition. Based on these experiments, one can speculate that a Gardner transition indeed can 

be observed by a detailed study of secondary relaxations in real glass formers well below the 

glass-transition temperature and that in xylitol TG is located approximately at 100 K. It is clear 

that these observed deviations of a continuously broadening JG relaxation may also have 

other reasons: In first respect one might argue that a constant Gaussian distribution of energy 

barriers is a too oversimplified approach and that the real distribution of energy barriers might 

be much more complex. In addition, constant-loss contributions due to caged dynamics have 

been predicted within the extended coupling model by Ngai [64]. It could well be that, at low 

temperatures, these additional constant-loss contributions superimpose with the loss of the 

high-frequency flank of the JG relaxations and finally become visible below 100 K in the case 

of xylitol. One has to await further experiments to further verify these speculations about the 

experimental observation of the Gardner transition in real glasses.  

 

 

0.8

0.9

1.0

(a)



xylitol

0 100 200

10
1

10
2

10
3

(b)

W


T
 
(K)

0 100 200
10

3

10
4

W


T
 (

K
)

 



26 

 

5. Concluding remarks on the phenomenology of glass freezing 

  

 In the previous chapters, we have discussed the phenomenology of glassy freezing as 

observed by broadband dielectric spectroscopy. For most supercooled liquids, the relaxation 

dynamics can be characterized by a dominating structural or α-relaxation followed in the 

spectra by an additional secondary JG-type process on the high-frequency flank of the -

relaxation peak. At GHz frequencies, we enter the frequency domain of the critical dynamics 

described by the mode-coupling theory, followed by the boson peak at THz frequencies. 

Intramolecular excitations at even higher frequencies have not been discussed in this review. 

A schematic overview of this complex relaxation dynamics is plotted in Figs. 18, depicting 

the situation for a rather low temperature, close to Tg [20]. Figure 18(a) shows the 

characteristic features of type-A glass formers, where the high frequency flank of the 

structural relaxation only exhibits a change of slope. We interpret this excess-wing 

phenomenon [68] as an inherent JG relaxation, which is more strongly coupled to the 

structural relaxation as compared to type-B glass formers and follows a super-Arrhenius 

behavior in its temperature evolution. Figure 18(b) shows the relaxation dynamics at a 

temperature close to the glass transition for a type-B glass former with the characteristic JG ß-

relaxation. For temperatures T < Tg, the average relaxation time of the secondary relaxation 

strictly follows an Arrhenius behavior and is strongly decoupled from the structural 

relaxation. 

 

 

 

 

 

 
Fig. 18: Frequency dependence of the dielectric loss at 

a temperature close to the glass transition (a) in a 

prototypical type-A glass former with an excess wing 

and (b) in a type-B glass former with a canonical JG ß 

relaxation [20]. 
 

 

 
 

 

 
 

   
  
 

 

 
 

 

 

Finally, Fig. 19 provides the prototypical evolution of a supercooled liquid when 

cooled from a low-viscosity state at high temperatures to temperatures far below the glass 

transition [14,21]. At the highest temperatures [Fig. 19(a)], the dielectric loss of the low-

viscosity liquid shows a dominant structural relaxation, almost merging with the boson peak. 

On lowering temperatures [Fig. 19(b)], and below the melting temperature Tm, the structural 

relaxation in the supercooled-liquid state separates from the fast processes creating a 

characteristic minimum, which is well described by the critical dynamics of the mode-

coupling theory. This critical spectrum follows a strict scaling behavior with a critical 

temperature Tc. Of course, in real materials, this critical spectrum never softens completely 

and hopping processes play a dominant role. The dash-dotted line in Fig. 19(b) indicates a 
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possible CC peak responsible for the critical law [154]. Approximately for T < Tc, secondary 

relaxations evolve, which become more prominent on further lowering the temperatures. 

Figure 19(c) provides a schematic view of the relaxation dynamics close to the glass-

transition temperature for a type-A glass former. The dash-dotted line indicates how the 

excess wing is caused by a submerged secondary relaxation peak [68]. Finally, well below the 

glass-transition temperature [Fig. 19(d)], only secondary relaxations survive. The dielectric 

loss in this temperature regime becomes almost flat and can be described as constant-loss 

phenomenon or as secondary process, which becomes infinitely broad. There are recent 

speculations that a further characteristic temperature appears below Tg, the Gardner transition 

[143], where the energy potential surface exhibits a further fractionalization 

[145,146,147,148,149], and that this transition gives rise to additional processes and can be 

identified by dielectric spectroscopy in sub-Tg experiments [26]. This has been detailed in 

chapter 4.2 and a schematic loss spectrum is shown in Fig. 15(d). Finally, the glassy freezing 

as viewed by dielectric spectroscopy via the dielectric loss [Fig. 19(a) – (d)] is confronted in 

Fig. 19(d) with the dielectric loss observed in a crystalline material. In a crystal with long-

range translational and orientational order, phonons are the only relevant absorption processes 

and the idealized dielectric spectrum at low frequencies is completely loss-free.   
 

 

 

 

 

 

Fig. 19: Pictorial view of the temperature 

dependence of relaxation processes of 

supercooled liquids from the low-viscosity 

regime until deep into the glass phase, 

compared to the dielectric loss spectrum of an 

ideal crystal [14,21]. (a) In the low-viscosity 

liquid the structural relaxation almost merges 

with the boson peak. (b) In the regime of the 

supercooled liquid well above Tg, the 

structural relaxation and boson peak separate. 

In the minimum in between, the mode-

coupling fast process emerges. The dash-

dotted line indicates the CC peak discussed to 

be responsible for the critical dynamics [154]. 

(c) Close to the glass-transition temperature, a 

secondary  relaxation is observed. In the 

shown case of a type-A glass former, it leads 

to an excess wing. (d): At very low 

temperatures, in the sub-Tg regime, the 

structural relaxation is shifted out of the 

accessible frequency window. A nearly 

constant loss appears as a remainder of 

secondary relaxations. (e) Loss spectrum of 

crystalline matter, with long-range order. Here 

only phonons and intramolecular excitations 

exist.  
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 In conclusion, we have documented in this short review the power of broadband 

dielectric spectroscopy to unravel the complexity of glassy freezing in supercooled liquids. 

The understanding of the temperature evolution of a variety of processes, including structural 

relaxation, Johari-Goldstein relaxation, the fast ß process of the mode-coupling theory, and 

the boson peak, which appear in very different frequency windows, are a prerequisite for a 

deeper understanding of the glass transition. One also should have in mind that, irrespective 

of the microscopic interpretations, glassy dynamics looks very similar in a variety of systems, 

spanning small-molecule glass formers, polymers, ionic melts, or plastic crystals. It seems 

that a universal freezing scenario governs the glass transition in all these very different 

materials. Finally, we have pointed out the significance of sub-Tg experiments, referring to the 

importance of aging and to recent experiments possibly indicating a further phase transition, 

the so-called Gardner transition, deep in the solid glass sate, which can be measured even in 

non-thermodynamic equilibrium.     
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